skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhuyan, Neelkamal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the smoothed online quadratic optimization (SOQO) problem where, at each round t, a player plays an action xt in response to a quadratic hitting cost and an additional squared ℓ2-norm cost for switching actions. This problem class has strong connections to a wide range of application domains including smart grid management, adaptive control, and data center management, where switching-efficient algorithms are highly sought after. We study the SOQO problem in both adversarial and stochastic settings, and in this process, perform the first stochastic analysis of this class of problems. We provide the online optimal algorithm when the minimizers of the hitting cost function evolve as a general stochastic process, which, for the case of martingale process, takes the form of a distribution-agnostic dynamic interpolation algorithm that we call Lazy Adaptive Interpolation (LAI). Next, we present the stochastic-adversarial trade-off by proving an Ω(T) expected regret for the adversarial optimal algorithm in the literature (ROBD) with respect to LAI and, a sub-optimal competitive ratio for LAI in the adversarial setting. Finally, we present a best-of-both-worlds algorithm that obtains a robust adversarial performance while simultaneously achieving a near-optimal stochastic performance. 
    more » « less